Abstract

Positive temperature coefficient of resistance ceramics of composition (Ba0.89Ca0.08Pb0.03)TiO3 + Y2O3 + MnO + SiO2 have been produced using barium titanate powder with an average crystallite size of 125 nm prepared by calcining barium titanyl oxalate at 900°C. The effect of firing temperature on their microstructure and electrical properties has been studied. The results demonstrate that the ceramics possess semiconducting properties starting at a firing temperature of 1205–1215°C. The room-temperature resistivity of the ceramics has a minimum at tfiring ≈ 1245–1250°C. The samples sintered at 1250–1260°C have the largest positive temperature coefficient of resistance. The highest electric strength (360 V/mm at ρ25°C = 290 Ω cm) is offered by the thermistor materials sintered at 1260°C, which is 60–70°C below the firing temperature of analogous ceramics produced by solid-state reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call