Abstract
We show how to relate the full quantum dynamics of a spin-½ particle on \({\mathbb{R}^d}\) to a classical Hamiltonian dynamics on the enlarged phase space \({\mathbb{R}^{2d} \times \mathbb{S}^{2}}\) up to errors of second order in the semiclassical parameter. This is done via an Egorov-type theorem for normal Wigner–Weyl calculus for \({\mathbb{R}^d}\) (Folland, Harmonic Analysis on Phase Space, 1989; Lein, Weyl Quantization and Semiclassics, 2010) combined with the Stratonovich–Weyl calculus for SU(2) (Varilly and Gracia-Bondia, Ann Phys 190:107–148, 1989). For a specific class of Hamiltonians, including the Rabi- and Jaynes–Cummings model, we prove an Egorov theorem for times much longer than the semiclassical time scale. We illustrate the approach for a simple model of the Stern–Gerlach experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.