Abstract

Electron transfer (ET) rate is a fundamental parameter to characterize ET processes in physical, chemical, material and biologic sciences. It is affected by a number of quantum phenomena, such as nuclear tunneling, curve crossing, quantum interference, and the coupling to the environment. It is thus a challenge to accurately evaluate the ET rate since one has to incorporate both quantum effects and dissipation. In this review article, we present several semiclassical theories proposed in our group to cover the regime from weak to strong electronic coupling. Their applications to some concrete systems are also shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call