Abstract
Surface and curvature properties of asymmetric semi-infinite nuclear matter are studied to beyond the proton drip. Using the semiclassical extended Thomas-Fermi method with corrections of order h ̷ 2 , the calculations are performed in the non-relativistic and relativistic mean field theories (Skyrme forces and non-linear σ-ω parametrizations). First we discuss the bulk equilibrium between the nuclear and drip phases. Next we analyse the asymmetric surface as a function of the bulk neutron excess. We examine local quantities related to the density profiles and, for two definitions of the bulk reference energy, the surface and curvature energy coefficients. The calculation of the curvature energy is carefully treated. The sensitivity of the nuclear surface to the relativistic effects is investigated. Mass formulae useful for arbitrary neutron excess are discussed, and their limit at small asymmetries is compared with the liquid droplet model mass formula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.