Abstract
We use Boltzmann theory to study the semi-classical dynamics of electrons in a two-dimensional (2D) tilted Dirac material in which the tilt varies in space. The spatial variation of the tilt parameter induces a non-trivial spacetime geometry on the background of which the electrons roam about. As the first manifestation of graivto-electric phenomena, we find a geometric planar Hall effect according to which a current flows in a direction transverse to the chemical potential gradient and is proportional to gxy component of the emergent spacetime structure. The longitudinal conductivity contains information about the gravitational red-shift factors. Furthermore, in the absence of externally applied electric field there can be “free-fall” or zero-bias currents that can be used as detectors of terahertz radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.