Abstract

Two particles, initially in a product state, become entangled when they come together and start to interact. Using semiclassical methods, we calculate the time evolution of the corresponding reduced density matrix rho(1), obtained by integrating out the degrees of freedom of one of the particles. We find that entanglement generation sensitively depends (i) on the interaction potential, especially on its strength and range, and (ii) on the nature of the underlying classical dynamics. Under general statistical assumptions, and for short-ranged interaction potentials, we find that P(t) decays exponentially fast in a chaotic environment, whereas it decays only algebraically in a regular system. In the chaotic case, the decay rate is given by the golden rule spreading of one-particle states due to the two-particle coupling, but cannot exceed the system's Lyapunov exponent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.