Abstract

We study the process of laser-assisted dissociative recombination of an electron with a molecular cation using a semiclassical approach. In the region outside a reaction sphere the electron motion in the combined laser and Coulomb fields is treated classically. Within the sphere the laser-field effects are neglected, and the recombination probability is obtained from quantum-mechanical cross sections calculated for the laser-free process. Specific calculations are performed for dissociative recombination of ${\mathrm{H}}_{2}^{+}$ in the field of the intensity 2.09 GW/${\mathrm{cm}}^{2}$ and the wavelength $22.8\phantom{\rule{4pt}{0ex}}\ensuremath{\mu}\mathrm{m}$. In the energy region above 1 meV the cross section is significantly enhanced compared with the field-free case due to the Coulomb focusing effect. The influence of the indirect process due to electron capture into Rydberg states is also investigated. Although the Rydberg resonances are washed out due to the field effects, they influence significantly the magnitude of the dissociative recombination cross section.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.