Abstract

Superfluidity and superconductivity are genuine many-body manifestations of quantum coherence. For finite-size systems the associated pairing gap fluctuates as a function of size or shape. We provide a theoretical description of the zero temperature pairing fluctuations in the weak-coupling BCS limit of mesoscopic systems characterized by order or chaos dynamics. The theory accurately describes experimental observations of nuclear superfluidity (regular system), predicts universal fluctuations of superconductivity in small chaotic metallic grains, and provides a global analysis in ultracold Fermi gases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.