Abstract
We present a semiclassical theory for transmission through open quantum billiards which converges towards quantum transport. The transmission amplitude can be expressed as a sum over all classical paths and pseudopaths which consist of classical path segments joined by "kinks," i.e., diffractive scattering at lead mouths. For a rectangular billiard we show numerically that the sum over all such paths with a given number of kinks K converges to the quantum transmission amplitude as K--> infinity. Unitarity of the semiclassical theory is restored as K approaches infinity. Moreover, we find excellent agreement with the quantum path-length power spectrum up to very long path length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.