Abstract

Abstract We have studied the photodetachment dynamics of the H− ion in a harmonic potential confined in a quantum well for the first time. The closed orbits of the detached electron in a confined harmonic potential are found and the photodetachment spectra of this system are calculated. It is interesting to find that the photodetachment spectra depend sensitively on the size of the quantum well and the harmonic frequency. For smaller size of the quantum well, the harmonic potential can be considered as a perturbation, the interference effect between the returning electron wave bounced back by the quantum well and the initial outgoing wave is very strong, which makes the photodetachment spectra exhibits an irregular saw-tooth structure. With the increase of the size of the quantum well, the photodetachment spectra oscillates complicatedly in the higher energy region. For very large size of the quantum well, the photodetachment spectra approach to the case in a free harmonic potential, which is a regular saw-tooth structure. In addition, the harmonic frequency can also affect the photodetachment spectra of this system greatly. Our work provides a new method for the study of spatially confined low-dimensional systems and may guide the future experimental research for the photodetachment dynamics in the ion trap.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call