Abstract

We analyze the time evolution of the Bose-Hubbard model after a sudden quantum quench to a weakly interacting regime. Specifically, motivated by a recent experiment at Kyoto University, we numerically simulate redistribution of the kinetic and onsite-interaction energies at an early time, which was observed in non-equilibrium dynamics of ultracold Bose gases in a cubic optical lattice starting with a singly-occupied Mott-insulator state. In order to compute the short-time dynamics corresponding to the experimental situation, we apply the truncated-Wigner approximation (TWA) to the Bose-Hubbard model on a cubic lattice. We show that our semiclassical approach quantitatively reproduces the fast redistribution dynamics. We further analyze spatial spreading of density-density correlations at equal time in the Bose-Hubbard model on a square lattice with a large filling factor. When the system is initially prepared in a coherent state, we find that a propagation velocity of the correlation wave packet in the correlation function strongly depends on the final interaction strength, and it is bounded by twice the maximum group velocity of the elementary excitations. In contrast, when the system is initially in a Mott-insulator state, the propagation velocity of the wave packet is approximately independent of the final interaction strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.