Abstract
We describe a semiclassical quantum unimolecular reaction rate theory derived from the corresponding classical theory developed by Davis, Gray, Rice and Zhao (DGRZ). The analysis retains the intuitively useful mechanistic distinctions between intramolecular energy transfer and reaction, with the consequence that the semiclassical quantum theory version neglects some interference effects in the reaction dynamics. In the limiting case that intramolecular energy transfer is very fast compared to the rate of reaction we show that the DGRZ representation of the rate constant can be transformed, using the Weyl correspondence between quantum operators and classical variables, to the quantum flux–flux correlation function representation of the rate constant. In the more general case that the rate of intramolecular energy transfer influences the reaction dynamics, the semiclassical representation of the Wigner function for a classical system with both quasiperiodic and chaotic motion is used to obtain the reaction rate constant. Our analysis identifies the quantum analogue of the classical bottleneck to intramolecular energy transfer with the scars of unstable periodic orbits; it leads to a flux–flux correlation function representation of the rate constant for intramolecular energy transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.