Abstract

Using the functional integral technique of Dashen, Hasslacher, and Neveu, we perform a semiclassical quantization of the nonlinear Schrödinger equation, which reproduces McGuire's exact result for the energy levels of the theory's bound states. We show that the stability angle formalism leads to the one-loop normal ordering and self-energy renormalization expected from perturbation theory and demonstrate that taking into account center-of-mass motion gives the correct nonrelativistic energymomentum relation. We interpret the classical solution in the context of the quantum theory, relating it to the matrix element of the field operator between adjacent bound states in the limit of large quantum numbers. Finally, we quantize the NLSE as a theory of N component fermion fields and show that the semiclassical method yields the exact energy levels and correct degeneracies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.