Abstract

We semiclassically investigate Schwinger pair production for pulsed rotating electric fields depending on time. To do so we solve the Dirac equation for two-component fields in a WKB-like approximation. The result shows that for two-component fields the spin distribution of produced pairs is generally not $1:1$. As a result the pair creation rates of spinor and scalar quantum electro dynamics (QED) are different even for one pair of turning points. For rotating electric fields the pair creation rate is dominated by particles with a specific spin depending on the sense of rotation for a certain range of pulse lengths and frequencies. We present an analytical solution for the momentum spectrum of the constant rotating field. We find interference effects not only in the momentum spectrum but also in the total particle number of rotating electric fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.