Abstract

This paper deals with the existence of one-bump and multibump solutions for the following nonlinear field equation: $$-\Delta u+V(h x)u-\Delta_{p}u+ W'(u)=0$$ where $u:\mathbb R^{N}\rightarrow\mathbb R^{N+1},$ $N\geq 2,$ $p>N,$ $h>0,$ the potential $V$ is positive and $W$ is an appropriate singular function. Existence results are established provided that $h$ is sufficiently small, and we find solutions exhibiting a concentration behaviour in the semiclassical limit (i.e., as $h\rightarrow 0^{+}$) at any prescribed finite set of local minima, possibly degenerate, of the potential. Such solutions are obtained as local minima for the associated energy functional. No restriction on the global behaviour of $V$ is required except that it is bounded below away from zero. In the proofs of these results we use a variational approach, and the method relies on the study of the behaviour of sequences with bounded energy, in the spirit of the concentration-compactness principle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.