Abstract

A semiclassical analysis of amorphous semiconductors is presented. This analysis, cast within an effective-mass setting, provides for the overall density-of-states by averaging a local density-of-states over a distribution of potential fluctuations. Our density-of-states results span the transition from the tail states to the band states, and both analytical and numerical results are obtained. We then determine the functional form of the optical-absorption coefficient, and show that both subgap and Tauc absorption edges are captured within this analytical framework. Finally, we apply this formalism to the case of hydrogenated amorphous silicon, and find that our results are consistent with those of experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.