Abstract

We look at the long-time behavior of solutions to a semi-classical Schr\"odinger equation on the torus. We consider time scales which go to infinity when the semi-classical parameter goes to zero and we associate with each time-scale the set of semi-classical measures associated with all possible choices of initial data. On each classical invariant torus, the structure of semi-classical measures is described in terms of two-microlocal measures, obeying explicit propagation laws. We apply this construction in two directions. We first analyze the regularity of semi-classical measures, and we emphasize the existence of a threshold: for time-scales below this threshold, the set of semi-classical measures contains measures which are singular with respect to Lebesgue measure in the ``position'' variable, while at (and beyond) the threshold, all the semi-classical measures are absolutely continuous in the ``position'' variable, reflecting the dispersive properties of the equation. Second, the techniques of two-microlocal analysis introduced in the paper are used to prove semiclassical observability estimates. The results apply as well to general quantum completely integrable systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call