Abstract

The threshold behavior of the electron impact excitation cross sections for hydrogenic ions is investigated using the semiclassical approximation with the hyperbolic orbit for the projectile path, rather than the straight line path. The symmetric approximation is applied to modify the ordinary hyperbolic orbit. The modification factor due to the hyperbolic orbit approximation produces the correct energy dependence of the cross section near the excitation threshold. This result is very similar to that of the quantum mechanical case. The semiclassical enhancement factor due to this simple modification corresponds to the Coulomb focusing factor in the Born-Bethe approximation. In the high-energy limit, the semiclassical cross sections approach the Born-Bethe cross sections, with a finite cutoff in the momentum transfer for dipole transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call