Abstract

We present an analytical study of continuum 4d SU(2) gauge Higgs models with a single Higgs field with fixed length in either the fundamental or adjoint representation. We aim at analytically probing the renowned predictions of Fradkin & Shenker on the phase diagram in terms of confinement versus Higgs behaviour, obtained for the lattice version of the model. We work in the Landau version of the 't Hooft R_\xi gauges in which case we can access potential nonperturbative physics related to the existence of the Gribov copies. In the fundamental case, we clearly show that in the perturbative regime of small gauge coupling constant g and large Higgs vacuum expectation value v, there is a Higgs phase with Yukawa gauge boson propagators without Gribov effects. For a small value of the Higgs vev v and/or large g, we enter a region with Gribov type propagators that have no physical particle interpretation: the gauge bosons are as such confined. The transition between both behaviours is found to be continuous. In the adjoint case, we find evidence of a more drastic transition between the different behaviours for the propagator of the off-diagonal gauge bosons, whereas the "photon", i.e. the diagonal component of the gauge field, displays a propagator of the Gribov type. In the limit of infinite Higgs condensate, we show that a massless photon is recovered. We compare our findings with those of Fradkin & Shenker as well as with more recent numerical lattice simulations of the fundamental Higgs model. We also carefully discuss in which region of the parameter space (v,g) our approximations are trustworthy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.