Abstract
ABSTRACT On étudie des estimations semiclassiques sur la résolvente d'opérateurs qui ne sont ni elliptiques ni autoadjoints, que l'on utilise pour étudier le problème de Cauchy. En particulier on obtient une description précise du spectre pres de l'axe imaginaire, et des estimations de résolvente à l'intérieur du pseudo-spectre. On applique ensuite les résultats à l'opérateur de Kramers–Fokker–Planck. We study some accurate semiclassical resolvent estimates for operators that are neither selfadjoint nor elliptic, and applications to the Cauchy problem. In particular we get a precise description of the spectrum near the imaginary axis and precise resolvent estimates inside the pseudo-spectrum. We apply our results to the Kramers–Fokker–Planck operator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.