Abstract

AbstractSemibatch anionic ring‐opening polymerization of octamethylcyclotetrasiloxane with the use of seed polymer particles in emulsions was studied. The concentration of the emulsifier was set above the critical micelle concentration. We investigated the effect of the amount of seed polymer particles on the chemical kinetics and the average particle size and distribution. During monomer starving conditions the polymerization rate strongly depended on the monomer feed rate and not on the amount of seed particles. Throughout the entire monomer feed period the average particle size increased. This increase depended on the number and the size of seed particles. In emulsions with higher particle sizes higher equilibrium conversions were obtained. In our opinion, a greater extent of backbiting reactions is responsible for lower equilibrium conversions during and at the end of the process. The seeded semibatch process seems a reasonable choice for designing emulsion products with high monomer conversion and desired particle size. © 2012 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.