Abstract

ObjectiveTo detect and segment cerebral saccular aneurysms (CSAs) in 2D Digital Subtraction Angiography (DSA) images. Patients and methodsTen patients underwent Intra-arterial DSA procedures. Patients were injected with Iodine-containing radiopaque material. A scheme for semi-automatic detection and segmentation of intracranial aneurysms is proposed in this study. The algorithm consisted of three major image processing stages: image enhancement, image segmentation and image classification. Applied to the 2D Digital Subtraction Angiography (DSA) images, the algorithm was evaluated in 19 scene files to detect 10 CSAs. ResultsAneurysms were identified by the proposed detection and segmentation algorithm with 89.47% sensitivity and 80.95% positive predictive value (PPV) after executing the algorithm on 19 DSA images of 10 aneurysms. Results have been verified by specialized radiologists. However, 4 false positive aneurysms were detected when aneurysms’ location is at Anterior Communicating Artery (ACA). ConclusionThe suggested algorithm is a promising method for detection and segmentation of saccular aneurysms; it provides a diagnostic tool for CSAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.