Abstract

Abstract The presence of significant amounts of clay in tight-gas sand formations makes the determination of cation exchange capacities (CEC) important for electric-log, self-potential (SP), and gamma ray log interpretation. In the past, CEC measurements have been difficult and time-consuming to obtain. However, an automated method that avoids many difficulties of other techniques while determining the CEC's of many samples at one time has been described by Worthington1. Our work is a modification of the work done by Worthington. Easily assembled commercial equipment instead of specially built equipment is used to agitate rock samples contained in dialysis membrane bags during ion exchange with barium acetate solution and during washing of the samples to remove excess barium ions. Barium acetate is used as the source of barium ions instead of barium chloride, which is used in Worthington's procedure, to avoid corrosion of the stainless steel equipment. The amount of barium ions on the rock samples is then determined by conductometric titration with magnesium sulfate. The titration procedure is not automated. In addition, the use of the barium ion method was extended to samples with CEC values an order of magnitude lower than those determined by Worthington. Most measured CEC's for the western tight-gas sands ranged from 0.5 to 10 meq/100 g with a few to 19 meq/100 g. A comparison of barium acetate, adsorbed water, and ammonium acetate methods for determining CEC's is made.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.