Abstract
BackgroundIn acetabular fracture surgery, understanding the biomechanical behaviour of fractures and implants is beneficial for clinical decision-making about implant selection and postoperative (early) weightbearing protocols. This study outlines a novel approach for creating finite element models (FEA) from actual clinical cases. Our objectives were to (1) create a detailed semi-automatic three-dimensional FEA of a patient with a transverse posterior wall acetabular fracture and (2) biomechanically compare patient-specific implants with manually bent off-the-shelf implants.MethodsA computational study was performed in which we developed three finite element models. The models were derived from clinical imaging data of a 20-year-old male with a transverse posterior wall acetabular fracture treated with a patient-specific implant. This implant was designed to fit the patient's anatomy and fracture configuration, allowing for optimal placement and predetermined screw trajectories. The three FEA models included an intact hemipelvis for baseline comparison, one with a fracture fixated with a patient-specific implant, and another with a conventional implant. Two loading conditions were investigated: standing up and peak walking forces. Von Mises stress and displacement patterns in bone, implants and screws were analysed to assess the biomechanical behaviour of fracture fixation with either a patient-specific versus a conventional implant.ResultsThe finite element models demonstrated that for a transverse posterior wall type fracture, a patient-specific implant resulted in lower peak stresses in the bone (30 MPa and 56 MPa) in standing-up and peak walking scenario, respectively, compared to the conventional implant model (46 MPa and 90 MPa). The results suggested that patient-specific implant could safely withstand standing-up and walking after surgery, with maximum von Mises stresses in the implant of 156 MPa and 371 MPa, respectively. The results from the conventional implant indicate a likelihood of implant failure, with von Mises stresses in the implant (499 MPa and 1000 MPa) exceeding the yield stress of stainless steel.ConclusionThis study presents a workflow for conducting finite element analysis of real clinical cases in acetabular fracture surgery. This concept of personalized biomechanical fracture and implant assessment can eventually be applied in clinical settings to guide implant selection, compare conventional implants with innovative patient-specific ones, optimizing implant designs (including shape, size, materials, screw positions), and determine whether immediate full weight-bearing can be safely permitted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.