Abstract
Ring-opening copolymerisation of styrene oxide with alicyclic anhydrides containing different ring strains (succinic anhydride, maleic anhydride, citraconic anhydride, cyclopropane-1,2-dicarboxylic acid anhydride, cyclopentane-1,2-dicarboxylic acid anhydride and phthalic anhydride) was performed applying metal salen and tetraphenyl porphyrin complexes where for (salen)MX, M = Cr, X = Cl (1), M = Al, X = Cl (2), M = Mn, X = Cl (3), M = Co, X = OAc (4) and salen = N,N-bis(3,5-di-tert-butylsalicylidene)-diimine and for porphyrin complex, M = Cr, X = Cl (5), M = Mn, X = Cl (6), M = Co, X = OAc (7). The chromium catalysts performed best and therefore 1 was chosen as the selected catalyst for further studies. Investigation of the effect of different cocatalysts on the copolymerisation of styrene oxide and phthalic anhydride revealed that phosphines and onium salt showed quite similar activities whereas N-heterocyclic based amines showed somewhat lower activity. 1H NMR and MALDI-ToF-MS spectra of the copolymers formed confirmed the alternating microstructures. Increasing the monomer to catalyst ratio resulted in the isomerisation of styrene oxide to phenyl ethanal. The aldehyde functions as a chain transfer agent influencing the molecular weight of the polymers. Copolymerisation of styrene oxide with anhydrides bearing a double bond in their structure, such as maleic anhydride and citraconic anhydride, was shown to be highly dependent on temperature, time, type of cocatalyst and solvent used in the copolymerisation reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.