Abstract

AbstractFour-year (2014–17) zonal current data observed by a mooring at (5°N, 90.5°E) in the eastern Indian Ocean show a strong semiannual cycle in the middepth (~1200 m) with distinct vertical structure. This pronounced middepth semiannual variability, however, is inconsistent with the local wind forcing, which shows a predominant annual cycle. The underlying causes for this unique middepth variability along 5°N were elucidated with the addition of a reanalysis product and a continuously stratified linear ocean model. The results suggest that the observed seasonal variability in the middepth zonal flow at 5°N is primarily caused by boundary-reflected Rossby waves forced by the remote semiannual winds along the equator. Contribution from the locally wind-forced Rossby waves is much less. The theoretical Wentzel–Kramers–Brillouin ray paths further verify that the strong semiannual variability of the middepth signals over a moored region in the eastern Indian Ocean is largely a manifestation of the steep angles of propagating energy of the long Rossby waves at semiannual time scale. The annual signals are only significant in the upper and western sections (75°–80°E) as a result of the smooth trajectories of Rossby waves forced by local annual winds. Further analysis reveals that the middepth zonal currents along 5°N are expected to be associated with equatorial symmetric Rossby waves at semiannual period. Consequently, similar zonal flows should also exist in the middepth near 5°S.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call