Abstract

In the current paper, a semi-analytical solution is obtained for the problem of the peristaltic motion of Jeffrey nanofluid with heat transfer inside an asymmetric channel. The influences of variable viscosity, thermal conductivity, Hall currents, Joule heat and viscous dissipation are taken into consideration. The problem is modulated mathematically by a system of non-linear partial deferential equations which describe the fluid velocity, temperature and nanoparticles concentration distributions. This system is simplified by considering long wavelength of the peristaltic wave and low Reynolds number. It is solved by using the multi-step deferential transform method to obtain the velocity, temperature and nanoparticles concentration distributions, pressure rise and pressure gradient. These solutions are obtained as functions of the physical parameters of the problem. Tables and figures are discussed to see the effects of these parameters. It is found that the thermal conductivity parameter causes an increase in the pressure gradient, meanwhile it reduces the pressure rise. Furthermore, it is noticed that the behavior of Brownian and thermophoresis parameters on nanoparticles concentration field are quite reverse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call