Abstract

A semi-analytical method is developed based on conventional integrating factor (IF) and exponential time differencing (ETD) schemes for stiff problems. The latter means that there exists a thin layer with a large variation in their solutions. The occurrence of this stiff layer is due to the multiplication of a very small parameter $$\varepsilon $$ ? with the transient term of the equation. Via singular perturbation analysis, an analytic approximation of the stiff layer, which is called a corrector, is sought for and embedded into the IF and ETD methods. These new schemes are then used to approximate the non-stiff part of the solution. Since the stiff part is resolved analytically by the corrector, the new method outperforms the conventional ones in terms of accuracy. In this paper, we apply our new method for both problems of ordinary differential equations and some partial differential equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.