Abstract

Abstract Many geologic settings can be treated as linear composite (LC) reservoirs, where linear discontinuities divide the formation into multiple zones with different properties. Although there have been many studies on pressure behavior of production wells in an LC reservoir, most of the studies focus on vertical wells. The modeling of multiple fractured horizontal (MFH) wells in an LC reservoir remains limited. The goal of the present work is to propose a general semi-analytical model of an MFH well situated anywhere in a two-zone LC reservoir. This model can take into account the situation where the horizontal well intersects with the discontinuity and hydraulic fractures are distributed in both the two zones. According to the point-source function method, the semi-analytical solution for an MFH well in LC reservoirs is derived by using superposition principle, fracture discrete scheme and numerical inversion algorithm of Laplace transformation. Type curves of MFH wells far away from a discontinuity and across a discontinuity in an LC reservoir are drawn and analysed, respectively. Furthermore, the effects of some parameters on pressure behavior and rate response of an MFH well across a discontinuity are studied. This research finds that the pressure behavior and rate response of an MFH well across a discontinuity are significantly affected by the well location, properties of hydraulic fractures and formation properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call