Abstract
This paper proposes a nonlinear semi-analytical model (SAM) of the multi-phase Halbach array axial flux permanent magnet motor (AFPMM) to speed up the computation of its magnetic field. Compared to the existing analytical models, the proposed nonlinear SAM can directly consider magnetic saturation to obtain more accurate results. To this end, the multi-phase Halbach Array AFPMM is equivalent to several 2-D models by the Quasi-3D method under the Cartesian coordinate system. Then, the nonlinear SAM is developed by using the convolution theorem and the fast Fourier factorization. The proposed nonlinear SAM is studied on a five-phase Halbach array AFPMM with different rotors, and the nonlinear finite element (FE) model and experiment verify its effectiveness. The proposed SAM is computationally efficient and accurate, and it is also applicable to other types of multi-phase Halbach array PM electrical motors in Cartesian coordinates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Transportation Electrification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.