Abstract
Grinding process is generally used to improve the tolerance integrity and surface quality of a workpiece. However, in case of some hard-to-machine materials grinding can also be a cost effective alternative even for roughing operations. It is crucial to know process forces since they are necessary to identify the conditions for surface burn which is one of the most important issues in grinding applications. In this paper, a new semi-analytical force model for grinding process is developed by modeling abrasive grits and their interaction with the workpiece individually. Grits are examined to determine their geometrical properties and distribution on the grinding wheel. Semi-analytical equations for total normal and tangential force components as well as average force per grit are established by using the micro milling analogy. Fundamental parameters such as shear stress and friction coefficient between the grits and the work material are identified. The model can then be used in prediction of the forces for different cases involving the same material and the abrasive grain however with different conditions. The model predictions are verified by several experiments and also using Johnson-Cook material model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.