Abstract
Rail defect detection by video cameras has recently gained much attention in both academia and industry. Rail image data has two properties. It is highly imbalanced towards the non-defective class and it has a large number of unlabeled data samples available for semisupervised learning techniques. In this paper we investigate if positive defective candidates selected from the unlabeled data can help improve the balance between the two classes and gain performance on detecting a specic type of defects called Squats. We compare data sampling techniques as well and conclude that the semi-supervised techniques are a reasonable alternative for improving performance on applications such as rail track Squat detection from image data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.