Abstract

In this paper, we study the effective semi-supervised hashing method under the framework of regularized learning-based hashing. A nonlinear hash function is introduced to capture the underlying relationship among data points. Thus, the dimensionality of the matrix for computation is not only independent from the dimensionality of the original data space but also much smaller than the one using linear hash function. To effectively deal with the error accumulated during converting the real-value embeddings into the binary code after relaxation, we propose a semi-supervised nonlinear hashing algorithm using bootstrap sequential projection learning which effectively corrects the errors by taking into account of all the previous learned bits holistically without incurring the extra computational overhead. Experimental results on the six benchmark data sets demonstrate that the presented method outperforms the state-of-the-art hashing algorithms at a large margin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.