Abstract
In the engineering practice, lacking of data especially labeled data typically hinders the wide application of deep learning in mechanical fault diagnosis. However, collecting and labeling data is often expensive and time-consuming. To address this problem, a kind of semi-supervised meta-learning networks (SSMN) with squeeze-and-excitation attention is proposed for few-shot fault diagnosis in this paper. SSMN consists of a parameterized encoder, a non-parameterized prototype refinement process and a distance function. Based on attention mechanism, the encoder is able to extract distinct features to generate prototypes and enhance the identification accuracy. With semi-supervised few-shot learning, SSMN utilizes unlabeled data to refine original prototypes for better fault recognition. A combinatorial learning optimizer is designed to optimize SSMN efficiently. The effectiveness of the proposed method is demonstrated through three bearing vibration datasets and the results indicate the outstanding adaptability in different situations. Comparison with other approaches is also made under the same setup and the experimental results prove the superiority of the proposed method for few-shot fault diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.