Abstract
In this paper, we propose a novel semi-supervised learning approach based on nearest neighbor rule and cut edges. In the first step of our approach, a relative neighborhood graph based on all training samples is constructed for each unlabeled sample, and the unlabeled samples whose edges are all connected to training samples from the same class are labeled. These newly labeled samples are then added into the training samples. In the second step, standard self-training algorithm using nearest neighbor rule is applied for classification until a predetermined stopping criterion is met. In the third step, a statistical test is applied for label modification, and in the last step, the remaining unlabeled samples are classified using standard nearest neighbor rule. The main advantages of the proposed method are: (1) it reduces the error reinforcement by using relative neighborhood graph for classification in the initial stages of semi-supervised learning; (2) it introduces a label modification mechanism for better classification performance. Experimental results show the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.