Abstract

Mass spectrometry (MS) combined with high-performance liquid chromatography (LC) has received considerable attention for high-throughput analysis of proteomes. Isotopic labeling techniques such as ICAT [5,6] have been successfully applied to derive differential quantitative information for two protein samples, however at the price of significantly increased complexity of the experimental setup. To overcome these limitations, we consider a label-free setting where correspondences between elements of two samples have to be established prior to the comparative analysis. The alignment between samples is achieved by nonlinear robust ridge regression. The correspondence estimates are guided in a semi-supervised fashion by prior information which is derived from sequenced tandem mass spectra. The semi-supervised method for finding correspondences was successfully applied to aligning highly complex protein samples, even if they exhibit large variations due to different biological conditions. A large-scale experiment clearly demonstrates that the proposed method bridges the gap between statistical data analysis and label-free quantitative differential proteomics. The software will be available on the website http://people.inf.ethz.ch/befische/proteomics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.