Abstract
Dimensionality reduction is one of the most important steps for remotely sensed hyperspectral image classification. Feature selection as a kind of dimensionality reduction has attracted great attentions in the recent decades. In this paper, we proposed a novel feature selection method for hyperspectral image classification based on semi-supervised learning and sparsity score (or briefly called semi-supervised sparsity score (semi-SS)). In semi-SS, the pairwise constraints instead of class labels are used as the supervision information. Furthermore, the features chosen by Semi-SS have the ability to reconstruct the original data and sparsity preserving. Experiments conducted on two famous hyperspectral data sets illustrate that the proposed algorithm is remarkably effective in comparison to the existing feature selection methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Intelligence and Sensory Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.