Abstract

Extracting channel state information (CSI) from WiFi signals is of proved high-effectiveness in locating human locations in a device-free manner. However, existing localization/positioning systems are mainly trained and deployed in a fixed environment, and thus they are likely to suffer from substantial performance declines when immigrating to new environments. In this paper, we address the fundamental problem of WiFi-based cross-environment indoor localization using a semi-supervised approach, in which we only have access to the annotations of the source environment while the data in the target environments are un-annotated. This problem is of high practical values in enabling a well-trained system to be scalable to new environments without tedious human annotations. To this end, a deep neural forest is introduced which unifies the ensemble learning with the representation learning functionalities from deep neural networks in an end-to-end trainable fashion. On top of that, an adversarial training strategy is further employed to learn environment-invariant feature representations for facilitating more robust localization. Extensive experiments on real-world datasets demonstrate the superiority of the proposed methods over state-of-the-art baselines. Compared with the best-performing baseline, our model excels with an average 12.7% relative improvement on all six evaluation settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.