Abstract

A simple and efficient semi-supervised classification method is presented. An unsupervised spectral mapping method is extended to a semi-supervised situation with multiplicative modulation of similarities between data. Our proposed algorithm is derived by linearization of this nonlinear semi-supervised mapping method. Experiments using the proposed method for some public benchmark data and color image data reveal that our method outperforms a supervised algorithm using the linear discriminant analysis and a previous semi-supervised classification method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.