Abstract

The classification of Hyperspectral Image (HSI) plays an important role in various fields. To achieve more precise multi-target classification in a short time, a method for combining discrete non-local theory with traditional variable fraction Potts models is presented in this paper. The nonlocal operator makes better use of the information in a certain region centered on that pixel. Meanwhile, adding the constraint in the model can ensure that every pixel in HSI has only one class. The proposed model has the characteristics of non-convex, nonlinear, and non-smooth so that it is difficult to achieve global optimization results. By introducing a series of auxiliary variables and using the alternating direction method of multipliers, the proposed classification model is transformed into a series of convex subproblems. Finally, we conducted comparison experiments with support vector machine (SVM), K-nearest neighbor (KNN), and convolutional neural network (CNN) on five different dimensional HSI data sets. The numerical results further illustrate that the proposed method is stable and efficient and our algorithm can get more accurate predictions in a shorter time, especially when classifying data sets with more spectral layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call