Abstract
The use of deep learning methods in medical imaging has been able to deliver promising results; however, the success of such models highly relies on large, properly annotated datasets. The annotation of medical images is a laborious, expensive, and time-consuming process. This difficulty is increased for the mutations status label since these require additional exams (usually biopsies) to be obtained. On the other hand, raw images, without annotations, are extensively collected as part of the clinical routine. This work investigated methods that could mitigate the labelled data scarcity problem by using both labelled and unlabelled data to improve the efficiency of predictive models. A semi-supervised learning (SSL) approach was developed to predict epidermal growth factor receptor (EGFR) mutation status in lung cancer in a less invasive manner using 3D CT scans.The proposed approach consists of combining a variational autoencoder (VAE) and exploiting the power of adversarial training, intending that the features extracted from unlabelled data to discriminate images can help in the classification task. To incorporate labelled and unlabelled images, adversarial training was used, extending a traditional variational autoencoder. With the developed method, a mean AUC of 0.701 was achieved with the best-performing model, with only 14% of the training data being labelled. This SSL approach improved the discrimination ability by nearly 7 percentage points over a fully supervised model developed with the same amount of labelled data, confirming the advantage of using such methods when few annotated examples are available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.