Abstract

Semi‐solid metal casting is an innovative technology for the production of near‐net‐shape parts with demanding mechanical properties. The paper describes different processing routes and materials for semi‐solid‐metal casting (SSM), which have been investigated and also partially developed at the Foundry‐Institute of Aachen University.The standard thixocasting process for aluminium, highly reactive magnesium alloys and steel alloys with high melting points was investigated under variation of a wide range of process parameters. Specially adapted pre‐material production and reheating methods were developed for different materials and their application and future potential is pointed out. The thixocasting experiments were executed on a modified high pressure die‐casting machine with a specially designed “step‐die” providing wall thicknesses from 0.5 to 25 mm. The mechanical properties were tested in dependence of the wall thickness and the metal velocity. The results of these examination show high tensile strength values in combination with very good elongations.The rheocasting process is a new SSM‐forming method with liquid melt as feed‐stock and a high recycling potential. The research results of RCP‐technology (Rheo‐Container‐Process) invented at the Foundry‐Institute and of the Cooling‐Channel‐Process for aluminium and magnesium alloys are promising and are presented in this paper.Studies on semi‐solid processing of magnesium alloys and mixtures of them were conducted by ThixomoldingTM. To establish the most adequate process parameters, the temperature and the mixture relations were varied. Using a mould for tensile test specimens, the mechanical properties and the microstructure evolution could be evaluated. The chemical composition of the different phases was determined using SEM and EDX technologies. Evaluations of the flowing properties were conducted using a spiral mould with a total length of 2m and a cross section of 20mm x 1.5mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.