Abstract

The mixed 3-structures are the counterpart of paraquaternionic structures in odd dimension. A compatible metric with a mixed 3-structure is necessarily semi-Riemann and mixed 3-Sasakian manifolds are Einstein. We investigate the differential geometry of the semi-Riemannian hypersurfaces of co-index both 0 and 1 in a manifold endowed with a mixed 3-structure and a compatible metric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.