Abstract

In submarine and underwater detection tasks, conventional optical imaging and analysis methods are not universally applicable due to the limited penetration depth of visible light. Instead, sonar imaging has become a preferred alternative. However, the capture and transmission conditions in complicated and dynamic underwater environments inevitably lead to visual quality degradation of sonar images, which might also impede further recognition, analysis and understanding. To measure this quality decrease and provide a solid quality indicator for sonar image enhancement, we propose a task- and perception-oriented sonar image quality assessment (TPSIQA) method, in which a semi-reference (SR) approach is applied to adapt to the limited bandwidth of underwater communication channels. In particular, we exploit reduced visual features that are critical for both human perception of and object recognition in sonar images. The final quality indicator is obtained through ensemble learning, which aggregates an optimal subset of multiple base learners to achieve both high accuracy and a high generalization ability. In this way, we are able to develop a compact but generalized quality metric using a small database of sonar images. Experimental results demonstrate competitive performance, high efficiency, and strong robustness of our method compared to the latest available image quality metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.