Abstract
Many research groups successfully rely on whole-gene random mutagenesis and recombination approaches for the directed evolution of enzymes. Recent advances in enzyme engineering have used a combination of these random methods of directed evolution with elements of rational enzyme modification to successfully by-pass certain limitations of both directed evolution and rational design. Semi-rational approaches that target multiple, specific residues to mutate on the basis of prior structural or functional knowledge create 'smart' libraries that are more likely to yield positive results. Efficient sampling of mutations likely to affect enzyme function has been conducted both experimentally and, on a much greater scale, computationally, with remarkable improvements in substrate selectivity and specificity and in the de novo design of enzyme activities within scaffolds of known structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.