Abstract
The Condorcet criterion (CC) is a classical and well-accepted criterion for voting. Unfortunately, it is incompatible with many other desiderata including participation (PAR), half-way monotonicity (HM), Maskin monotonicity (MM), and strategy-proofness (SP). Such incompatibilities are often known as impossibility theorems, and are proved by worst-case analysis. Previous work has investigated the likelihood for these impossibilities to occur under certain models, which are often criticized of being unrealistic. We strengthen previous work by proving the first set of semi-random impossibilities for voting rules to satisfy CC and the more general, group versions of the four desiderata: for any sufficiently large number of voters n, any size of the group 1
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.