Abstract

Surface-enhanced Raman scattering (SERS) technology combines with chemometric method of principal component analysis (PCA) was used to calculate the composition of chemical mixtures in solution. We reported here that there exists composition discrepancy between molecules in solution and molecules adsorbed on Ag@Al2O3 nanorods substrates due to difference in adsorption kinetics of each component. We proposed here a way to calculate the adsorption kinetics factor for each component using a standard sample as the reference, with which one could correct the predictions given by PCA. We demonstrate the validity of this approach in estimating the compositions of mixtures with two, three and four components of 1, 4-Benzenedithiol, 2-Naphthalenethiol, 4-Mercaptobenzoic acid, and 4-Mercaptopyridine molecules, with acceptable errors. Furthermore, a general formula applied to more complex mixtures was proposed to calculate compositions in solution.

Highlights

  • Surface-enhanced Raman scattering (SERS) has long been considered as a powerful means for trace level detections of chemicals or molecules which should find potential applications in different fields, such as chemical sensing, food safety, environment monitoring, medical diagnosis, or drug delivery, etc[1,2,3,4,5,6,7,8,9]

  • We performed and device a simple way to estimate the composition of chemicals adsorbed on Ag@ SiO2 nanorods as the SERS substrate by principal components analysis (PCA), and prove it experimentally through several trace-level chemical mixtures in solution, by neglecting the difference in their adsorption kinetics[30]

  • We proposed in this study a way to calculate the adsorption kinetics factor for each component using a standard sample as the reference, with which one could correct the predictions given by PCA, and demonstrated its success for binary, ternary, and quadruple chemical mixtures

Read more

Summary

Introduction

Surface-enhanced Raman scattering (SERS) has long been considered as a powerful means for trace level detections of chemicals or molecules which should find potential applications in different fields, such as chemical sensing, food safety, environment monitoring, medical diagnosis, or drug delivery, etc[1,2,3,4,5,6,7,8,9]. We performed and device a simple way to estimate the composition of chemicals adsorbed on Ag@ SiO2 nanorods as the SERS substrate by PCA (which is normally used for discriminating molecules), and prove it experimentally through several trace-level chemical mixtures in solution, by neglecting the difference in their adsorption kinetics (i.e. treating the composition measured for chemicals adsorbed on the nanorods as the same in solution)[30]. We proposed in this study a way to calculate the adsorption kinetics factor for each component using a standard sample as the reference, with which one could correct the predictions given by PCA, and demonstrated its success for binary, ternary, and quadruple chemical mixtures This method might be developed into an effective quantitative SERS measurement approach of multicomponent mixtures at trace levels

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.