Abstract

Rapid molecular techniques that evaluate eggs for the presence of foodborne pathogens is an essential component to poultry food safety monitoring. Interestingly, it is not just table eggs that contribute to outbreaks of foodborne disease. Broiler layer production actively contributes to sustaining of foodborne pathogens within a flock. The surface contamination of production eggs with invasive pathogens such as Salmonella enterica, Campylobacter jejuni, and Listeria monocytogenes during embryogenesis results in gastrointestinal tract (GIT) colonization. Pathogens that secure a niche within the GIT during embryonic development are nearly impossible to eradicate from the food chain. Therefore, current monitoring paradigms are not comprehensive because they fail to capture the presence of invasive pathogens within the embryonic GIT rapidly. By developing tools to recognize the pathogens’ presence in the GIT during embryogenesis, producers are then able to spot evaluate broiler eggs for their potential risk as carriers of foodborne pathogens. In this study a novel qPCR assay was developed to semi-quantify pathogen load relative to total bacterial burden. Eggs sampled from three independent production broiler flocks of different ages were assayed for S. enterica (invA), C. jejuni (HipO), and L. monocytogenes (HlyA) against total microbial load (16s). The eggs were sampled at 1-day post-set within each flock, 2 weeks post-set, after vaccination (at 2.5 weeks) and 1-day post-hatch. The eggs were washed, and the yolk and embryonic chick GIT were collected. The DNA was extracted and subjected to a qPCR assay. The results confirm a novel technique for pathogen monitoring relative to total bacterial load and a unique method for monitoring the dynamics of foodborne pathogen invasion throughout broiler egg production.

Highlights

  • MATERIALS AND METHODSSubstantial data indicates that the pathogen load innately carries a certain level of risk; the absolute presence of any pathogen is substantial enough to remove a carcass from the processing line (Rajan et al, 2017)

  • Bacterial loads were low in the gastrointestinal tract (GIT) samples during the first two weeks post-set for all three broiler breeder flocks (T1 and T2; 4.50–4.54, 4.84–4.52, and 5.61–5.52 log copies/g for F1, F2, and F3, respectively)

  • Two of the broiler breeder flocks (F1, F3) yielded low total bacterial loads within the yolk regardless of embryonic age (4.09–4.59 and 4.22–4.58 log10 copies/g, respectively), total bacterial concentrations in the yolks of the F1 and F2 flock both significantly changed by T4 (Table 2)

Read more

Summary

Introduction

MATERIALS AND METHODSSubstantial data indicates that the pathogen load innately carries a certain level of risk; the absolute presence of any pathogen is substantial enough to remove a carcass from the processing line (Rajan et al, 2017). Egg washes (EW) were compared to yolk and embryonic chick GIT pathogen load.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.