Abstract
Human immunodeficiency virus (HIV) causing acquired immune deficiency syndrome (AIDS) is still a global issue. Long-term drug treatment and nonadherence to medication increase the spread of drug-resistant HIV strains. Therefore, the identification of new lead compounds is being investigated and is highly desirable. Nevertheless, a process generally necessitates a significant budget and human resources. In this study, a simple biosensor platform for semi-quantification and verification of the potency of HIV protease inhibitors (PIs) based on electrochemically detecting the cleavage activity of the HIV-1 subtype C-PR (C-SA HIV-1 PR) was proposed. An electrochemical biosensor was fabricated by immobilizing His6-matrix-capsid (H6MA-CA) on the electrode surface via the chelation to Ni2+-nitrilotriacetic acid (NTA) functionalized GO. The functional groups and the characteristics of modified screen-printed carbon electrodes (SPCE) were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). C-SA HIV-1 PR activity and the effect of PIs were validated by recording changes in electrical current signals of the ferri/ferrocyanide redox probe. The detection of PIs, i.e., lopinavir (LPV) and indinavir (IDV), toward the HIV protease was confirmed by the decrease in the current signals in a dose-dependent manner. In addition, our developed biosensor demonstrates the ability to distinguish the potency of two PIs to inhibit C-SA HIV-1 PR activities. We anticipated that this low-cost electrochemical biosensor would increase the efficiency of the lead compound screening process and accelerate the discovery and development of new HIV drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.