Abstract

The matrix nuclear norm minimization problem has been extensively researched in recent years due to its widespread applications in control design, signal and image restoration, machine learning, big data problems, and more. One popular model is nuclear norm minimization with the l2-norm fidelity term, but it is only effective for those problems with Gaussian noise. A nuclear norm minimization problem with the l1-norm fidelity term has been studied in this paper, which can deal with the problems with not only non-Gaussian noise but also Gaussian noise or their mixture. Moreover, it also keeps the efficiency for the noiseless case. Given the nonsmooth proposed model, we transform it into a separated form by introducing an auxiliary variable and solve it by the semi-proximal alternating direction method of multipliers (sPADMM). Furthermore, we first attempt to solve its dual problem by sPADMM. Then, the convergence guarantees for the aforementioned algorithms are given. Finally, some numerical studies are dedicated to show the robustness of the proposed model and the effectiveness of the presented algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call